

Seat	
No.	

M.Sc. (Part – I) (Semester – I) (CBCS) Examination, 2015

		NICS (New) merical Methods	
Day and Date : Mono Time : 10.30 a.m. to	•		Total Marks : 70
Instructions	,		ks.
1. A) Choose corre	ect answer :		8
a) time dob) frequec) time dod) amplito	ce transformation, the formation to frequency don ncy domain to time donomain to amplitude donude domain to time donude domain to time don	nain nain nain nain	
If data co always	nsist n number of poi	nts, then n th order fo	orward difference is
a) one	b) two	c) zero	d) infinity
For set of suitable.	points of unequal inter	val metho	od of interpolation is
a) Cubic c) Lagrar	-	b) Newton's ford) All of these	orward difference
4) For RK – 2	2 order method Taylors	s Series can be trunc	ated from
a) Oh ⁵	b) Oh ³	c) Oh ²	d) All of these
	ransform of f (t) = t^3 is		1) (0) ((04)
a) 1/S	b) (6)/(S)	c) (24)/S ³	d) (6)/(S ⁴)

- 6) The R-2R ladder network can be solved by using _____ matrix system of equations.
 - a) Tridiagonal

b) U-matrix

c) L-matrix

- d) All of these
- 7) For Newtons forward difference $\Delta^2 Y_0 =$
 - a) E^2

b) $(E - 1)^2$

c) $(E + 1)^2$

- d) All of these
- 8) The Least squares method of curve fitting is developed by considering
 - a) minimization of data points
- b) minimization of error
- c) maximization of data points
- d) maximization of errors

B) State **true** or **false**:

6

- In Gauss-Jordon elimination method, the coefficient matrix must be reduced to unit matrix.
- 2) Round-off error is the difference between observed value and theoretical value.
- 3) Laplace transformation of $e^{\alpha t} = 1/(s \alpha)$.
- 4) Lagrangian Interpolation formula gives third order polynomial.
- 5) Simpson 3/8 rule ensures pairs 4 points.
- 6) Laplace transformation converts frequency domain function into time domain.
- 2. A) Attempt any two:

10

- 1) Derive expression for Laplace transformation of f (t) = $\cos \omega t$.
- 2) What do you mean by Pivoting?
- 3) Solve:

$$X_1 - X_2 + X_3 = 4$$

$$2x_1 + 4x_2 + x_3 = 6$$

$$x_1 + x_2 + 5x_3 = -2$$

B) Write a note on Lagrangian method of interpolation.

3. A) Describe formation of system of linear equations. Describe Gaussian Jordon elimination method for solution of system of linear equations.

8

B) Evaluate by using trapezoidal method

6

$$I = \int_0^1 (1+x) dx$$

4. A) Describe in detail the analysis of RL circuit by using Laplace Transformation.

8

B) Find first order derivative f'(x) at x = 6.

6

$$X = 2$$

4

6

8 10

$$Y = 1.583$$

1.797

2.044

2.325

2.651

5. A) With suitable example describe Least Squares method of curve fitting.

8

6

B) Fit following data to the Straight line

X = 0

Y = 10

5

14

10

19

15

25

20

31 36

25

6. A) What do you mean by quadrature? Describe in detail the Newton Cote formal for numerical integration.

8

B) Using Newton's backward difference interpolation method find y (15) for following data points.

6

20

30

40

50

Y = 9.21

17.54

31.82

55.32

92.51

7. A) Describe R-K method of finding solution of first order ordinary differential equation.

8

B) Using RK-II order method find value of y (0.2). Given that

$$\frac{dy}{dx} = x^2 - y \text{ and } y (0) = 1.$$

6

Seat	
No.	

M.Sc. (Part – I) (Semester – I) Electronics Examination, 2015 INSTRUMENTATION DESIGN (New CBCS) Paper No. – II

Day and Date: Wednesday, 18-11-2015 Max. Marks: 70

Time: 10.30 a.m. to 1.00 p.m.

Instructions: 1) Q. 1 and Q. 2 are compulsory.

- 2) Attempt any three from Q. 3 to Q. 7.
- 3) Figures to the right indicate full marks.
- 4) **Use** of non-programmable calculator is **allowed**.
- 1. Objective type questions:

8

- A) Choose a correct alternative:
 - 1) Piezoelectric crystal can produce an emf
 - a) When external mechanical force is applied to it
 - b) When radiant energy stimulates the crystal
 - c) When external magnetic field is applied
 - d) When the junction of two such crystals are heated
 - 2) The transducers which requires an external power and their output is a measure of some variation such as resistance, inductance, capacitance etc. are called as
 - a) Active transducer

b) Primary sensor

c) Passive transducer

- d) Self generating transducer
- 3) LVDT windings are wound on
 - a) Steel sheets

b) Aluminium

c) Ferrite

- d) Copper
- 4) The sensitivity factor of strain gauge is normally of the order of

a) 1 to 1.5

b) 1.5 to 2.0

c) 0.5 to 1.0

d) 5 to 10

5)	Wheatstone bridge has got three resistances taken in one direction as
	120.3 Ω , 119.2 Ω and 119.2 Ω . The value of the fourth resistance for null
	balance would be

- a) 119.2Ω
- b) 120.3Ω
- c) 120.0Ω
- d) 118.2Ω
- 6) Static force calibration can be carried out with
 - a) live weights

b) null weights

c) dead weights

- d) none of these
- 7) A chromatograph is used for
 - a) measuring a flow rate of gas
 - b) measuring the temperature of the gas
 - c) analysing the compensation of the gas
 - d) measuring the pressure of the gas
- 8) The temperature to which a vapor gas mixture must be cooled (at verying humidity) to saturate it is
 - a) dew point

b) wet bulb temperature

c) atmospheric temperature

d) none of these

B) State true or false:

6

- A data logger has a hold device to hold the analog signal at its previous value till it is digitized.
- 2) A piezo-electric type load cell is preferred over other devices for measuring static forces.
- 3) Response and sensitivity of a thermocouple is improved by using heavy gauge wire (i.e. bigger diameter wire).
- 4) The obstruction type of flow meters have a linear relationship between the pressure difference and the rate of fluid flow.
- 5) To display the data on the LCD, data must be in the form of ASCII value.
- 6) LVDT is not a self-generating type transducer.

2.	A)	Attempt any two. (2	2×5=10)
		1) Explain the proximity type inductance transducer.	
		2) Draw and explain V to F convertor.	
		3) What is calibration and what is its importance?	
	B)	Explain loading effect in instrumentation system.	4
3.	A)	What are the internal blocks of AD595 ? Explain use of AD595 as a set pocontroller.	oint 8
	B)	Describe the reference junction compensation of thermocouple.	6
4.	A)	Explain bonded resistance wire strain gauges and derive the expression to gauge factor.	for 8
	B)	Discuss the factors affecting the sensitivity of the strain gauges.	6
5.	A)	Explain the NTC characteristics of thermistor. What are the different type thermistor? Explain advantages and limitations of thermistor.	e of 8
	B)	Explain Seebeck effect and Peltier emf in association with thermocouple.	6
6.	A)	Draw and explain the A.C. and D.C. type circuits associated with capacit transducer.	ive 8
	B)	Define error. What are different types of error? Explain them in briefly.	6
7.	,	Explain the designing of instrumentation for measurement of humidity. What are data loggers? What are the functions of a data logger?	8

Seat	
No.	

M.Sc. – I (Semester – I) Examination, 2015 ELECTRONICS (CBCS) (New) Paper – III: Power Electronics

Day and Date : Fr	riday, 20-11-2015		Total Marks: 70
Time : 10.30 a.m	ı. to 1.00 p.m.		
Instructions	: 1) Attempt five quest 2) Question 1 and 2 a 3) Attempt any three 4) Figures to the righ	are compulsory . In from Q. 3 to Q. 7 .	
1. A) Choose c	correct answer :		8
,	gle pulse modulation of ated if pulse width is equ		rd harmonics can be
a) π/6	6 b) π/3	c) 2π/3	d) π/2
, 	chopper feeds resistive (where k is the d	uty cycle).	ve O/P resistance is
a) kR		b) √kR	
c) R/k	<	d) Non	e of these
,	tep up chopper feeds th uty cycle is 0.5. The O/F		•
a) 100	0 V b) 150 V	/ c) 200	V d) 250 V
a) RC b) Ind c) Ind	v/dt protection is achieve C across power devices ductor across the power d ductor in series with pow pacitor across devices	levice	
a) On b) On	ycloconverter it is possil nly output frequency nly output voltage th output voltage and fre	·	taneously

d) Both output voltage and output frequency simultaneously

4.	A)	With the help of neat circuit diagram and associated waveforms. Explain operation of half bridge inverter with resistive load and derive equation for output voltage.	8
	B)	A single phase half bridge inverter has resistive load of 2 ohm and I/P voltage of 24 V. Calculate average current, peak current.	6
5.	A)	With neat circuit diagram and waveform explain the operation of the full wave controlled rectifier, which feeds the inductive load.	8
	B)	Derive the relations for average O/P voltage and r.m.s. O/P voltage.	6
6.	A)	With circuit diagram describe the operation bidirectional AC voltage controller.	8
	B)	Explain operation of three phase half wave controlled rectifier. Draw waveforms.	6
7.	A)	Explain in details the three phase to single phase cycloconverter.	8
	B)	Microcontroller based firing scheme for cycloconverter.	6

Seat	
No.	

M.Sc. – I (Semester – II) Examination, 2015 ELECTRONICS (New CGPA) Paper – V : Control Theory

Day and Date	e : Tuesday, 17-11-2015		Max. Marks: 70
Time : 10.30	a.m. to 1.00 p.m.		
Instructi	 ions: 1) Answer five questions. 2) Questions 1 and 2 are c 3) Attempt any three from 4) Figures to the right indi 	Q. 3 to Q. 7 .	
1. a) Choos	se correct answer :		8
,	all the roots of the characteristic e e system is stable.	equation have	real part,
a)	positive	b) negative	
c)	both a) and b)	d) none of these	
2) Fo	r type-O system, the steady state	unit ramp error is	
a)	∞	b) 1	
c)	$\frac{1}{5}$	d) both a) and b)	
3)	is most sensitive to th	e presence of non line	arities.
		b) Close loop system	
c)		d) Unstable system	
4) In	open loop system, the control acti	on is of t	he output.
a)	dependent	b) independent	
c)	only a)	d) none of these	
5)	control system is also	known as rate contro	l.
a)	proportional	b) integral	
c)	derivative	d) both a) and b)	

SLR-MM - 268

		6) Which of the following technique give:	s quick transient and stability response?	
		a) Root locus	b) Nyquist	
		c) Bode	d) Polar	
		7) Feed back system has advantage of	ftransient response.	
		a) Improving	b) Decreasing	
		c) Both a) and b)	d) None of these	
		8) is time domen test		
		a) Bode plotc) Nyquist criterion	b) Root locus plotd) None of these	
	ل ا	, , ,	d) None of these	c
	D)	State true of false:	region on the avertown due amino	6
		1) The transfer function equation dete		
		2) A high damping ratio will be a high of		
		3) Root locus is a frequency domain to		
		4) Proportional control system is also	·	
		5) Nyquist criteria gives direct value o		
		6) For type one system, the steady st	ate acceleration error is zero.	
2.	a)	Solve any two :		10
		1) Write note on proportional derivativ	e control system.	
		2) Write note on standard test signal.3) Write note on stability of system.		
	b)	Explain advantages of feedback syste	n in detail.	4
2	-	•		0
ა.	-	Write note on regenerative feedback s Write note on poles and zeros.	/stem.	8 6
	•	·		
4.	•	Explain Routh stability criterion.	dual accident	8
	D)	Compare open loop and close loop cor	itroi system.	6
5.	a)	Effect of feedback on system dynamic	S.	8
	b)	Sketch the polar plot of $G(jw) = \frac{1}{1 + iwt}$		6
	,	1+ jwt		
6.	a)	Explain correlation between time and f	equency response.	8
	b)	Write note on steady state error.		6
7	a١	Explain all pass an minimum phase sy	stem	8
٠.	•	Explain roll of controllers in process in		6
	٠,	Explain for or domination in product in	ado., j.	•

Seat	
No.	

M.Sc. (Part – I) (Semester – II) (New) Examination, 2015 **ELECTRONICS (CGPA)**

Paper – VI : Real 1	ime Operating System
Day and Date : Thursday, 19-11-2015	Max. Marks : 70
Time: 10.30 a.m. to 1.00 p.m.	
,	
1. A) Choose correct alternative :	8
1) Normally, the output of ADC of	AVR At megal-is
a) Right Justifiedc) Left Justified	b) Center Justifyd) None of these
2) Hard real time system is	
a) Reversiblec) Time independent	b) Irreversibled) None of these
3) is the fundamental	,
a) Stack size c) Priority	b) Time schedule d) Context
4) Which of the following is the sua) Semaphore b) Mutex	table solution avoid priority inversion ? c) Static priority d) None of these
5) To avoid starvation of the procea) idlec) system	b) ideal d) all of these
6) If two tasks share a common rea) spinlockc) dead lock	source then condition occurs. b) livelock d) race condition

		7) The Kernel of the RTOS should	pro	ovide to	the task.	
		a) Memory management	b)	Resource manag	ement	
		c) Time management	d)	All of these		
		8) To establish intertask commun Kernel is deployed.	ica	tion	object of the RTOS	
		a) Semphore	b)	Mutex		
		c) Message box	d)	P thread		
	B)	State true or false :				6
		 To design system for pH measu with D.C source. 	ıren	nent the pH electro	de should be supplied	
		2) The task is an example of end	less	s loop.		
		3) In round-robin scheduling the t	task	s are pre-emptied	l upon execution.	
		4) On acquire the semaphore co		•		
		RT Linux Kernel is the super Kernel.	r im	position of real t	me Kernel on Linux	
		6) Micro C/OS – II kernel is not s	uita	ble for AVR micro	ocontrollers.	
2.	A)	Attempt any two:				10
	·	1) Write a note on FSM of the tas	k.			
		2) What do you mean by priority?)			
		With the suitable diagram, desc with AVR microcontroller.	ribe	e the composition	of embedded system	
	B)	What do you mean by context swi	tchi	ng ?		4
3.	A)	What do you mean by scheduling	? D	escribe priority ba	sed pre-emptive	
		scheduling mechanism.				7
	B)	Describe structure of the task.				7
4.	A)	Describe in detail the architecture	of t	he Kernel of RT L	inux.	7
	B)	What do you mean by thread? Dif	fere	entiate the task an	d thread.	7
5.	A)	Define the term RTOS. Give the ch	nara	acteristics of RTO	S. Describe Hard and	
		soft real time system.				7
	B)	Write a problem in RTOS to real A	DC	data. Create 4 ta	sk.	7
6.	A)	Describe in detail the Kernel object	t "S	emaphore".		7
	B)	What do you mean by intertask co	mm	nunication?		7
7.	A)	Describe designing of an embedde	ed s	system to measure	e humidity.	7
	B)	Write a note on priority inversion.				7

Seat	
No.	

M.Sc. (Part – I) (Semester – II) (New) Examination, 2015 ELECTRONICS (CGPA) Paper – VII : Opto Electronics

Day and D	ate : Saturday, 21-11-2015		Total Marks: 70
Time: 10.3	30 a.m. to 1.00 p.m.		
Instru	uctions: 1) Q. 1 and 2 are compuls	sory.	
	2) Solve any three from C	Q. 3 to Q. 7 .	
	3) Figures to the right ind	icate full marks.	
	4) All questions carry equ	al marks.	
1. A) Ch	oose correct alternative :		8
1)	is the magneto optical p	ohenomenon.	
	a) Faraday's effect	b) Faraday law	
	c) Kerr effect	d) All of these	
2)	Total internal reflection occurs when	n	
	a) angle of incidence \geq critical angle	е	
	b) critical angle \geq angle of incidence	ce	
	c) angle of incidence = critical angl	е	
	d) None of these		
3)	In surface emitting LED, the light em of the fiber.	itting region is	to the axis
	a) Parallel	b) Perpendicular	
	c) Tangential	d) None of these	
4)	In semiconductor detectorslinearly with increase in incident ligh		de increases
	a) Forward	b) Reverse	
	c) Leakage	d) All of these	

B) State True or False:

6

- 1) In single mode step index fiber the RI of core is uniform throughout core.
- 2) Pocket's cell works with the linear electro-optic effect.
- 3) LiNBO₃ is not optically active material.
- 4) Optically anisotropic materials are called birefringent material.
- 5) Acousto-optic devices are operating with magnetic field.
- 6) VAD is the continuous fiber fabrication process.

2. A) Attempt any two:

10

- 1) Describe the construction of optical fiber.
- 2) Write a note on photo transistor.
- 3) What do you mean by spicing?
- B) Write a note on LED as optical source.

4

SLR-MM - 271

Seat	
No.	

M.Sc. (Part – I) (Semester – II) (New) Examination, 2015 ELECTRONICS (CGPA)

Paper - VIII: Signals and Systems

i apei – viii . Si	
Day and Date: Tuesday, 24-11-2015	Total Marks : 70
Time: 10.30 a.m. to 1.00 p.m.	
Instructions: 1) Answer five question 1 and 2 2) Question 1 and 2 3) Attempt any three 4) Figures to the rig	are compulsory .
1. A) Choose the correct answers :	8
 A continuous time signal x(t) condition 	is said to be periodic if it statisfies the
a) $x (t + T) = x (t)$	b) $x(t) = x(\pi + t)$
c) $x (n + N) = x (n)$	d) $x(t) = -x(t)$
2) A signal x (t) is called an power	signal if the power statifies the condition
a) 0 > p > ∞	b) 0 < p < ∞
c) 0 < E < ∞	d) none of these
3) If a periodic signal has an even	symmetry the Fourier series contains
a) Only sine term	b) Only cosine terms
c) Constant and cosine terms	d) Both sine and cosine terms
4) If x (t) is even, then its Fourier s	series coefficient must be
a) real and even	b) real and odd
c) imaginary and even	d) imaginary and odd
A signal which can be describe as signal.	d by a mathematical expression is called
a) power	b) deterministic
c) random	d) energy

- 6) A system y (n) = |x(n)| is _____ system.
 - a) static

b) time invariant

c) linear

- d) both a) and b)
- 7) The argument t in u(n) is _____ then the unit step function is zero.
 - a) less than zero
- b) greater than zero
- c) equal to zero
- d) one
- 8) The signum function is mathematically represented as

a)
$$sgn(t) = \begin{cases} 1 & for \ t > 0 \\ -1 & for \ t < 0 \end{cases}$$
 b) $sgn(t) = \begin{cases} 1 & for \ t < 0 \\ -1 & for \ t > 0 \end{cases}$

b)
$$sgn(t) = \begin{cases} 1 & for t < 0 \\ -1 & for t > 0 \end{cases}$$

c)
$$sgn(t) = \frac{sin(\pi t)}{\pi t}$$

c)
$$sgn(t) = \frac{sin(\pi t)}{\pi t}$$
 d) $sgn(t) = \begin{cases} 1 & for t \le 0 \\ 0 & for other \end{cases}$

B) State true or false:

6

- 1) Static system is memoryless system.
- 2) A relaxed system mean when input to the system is finite then the output of system is also infinite...
- 3) The Fourier expansion of a half-wave symmetry periodic signal contains odd harmonic.
- 4) In MATLAB % sign used for modulo division.
- 5) The ramp function can be obtained by applying unit step function to an integrator.
- 6) A LTI system is causal if and only if h(n) = 1.

2. A) Attempt any two:

10

- 1) Write a note on different types of file used in MATLAB.
- 2) Write a note on continuous-time and discrete time signal.
- 3) Write a note on basic structure of MATLAB and mention the various matab commands.
- B) Check whether the following system is time varient or not.

4

$$y(n) = \sum_{k=0}^{2} x(n-k)$$

8

6

8

6

8

6

- 3. A) State the different properties of Fourier series and explain any two in detail.
 - B) Write a note on Fourier series representation of periodic signals.
- 4. A) Define a system. How the system are classified?
 - B) A discrete time signal is given by $x(n) = \{1, 2, 1, 1, 2, 1\}$. Sketch the following signal. (i) x(-n + 2) (ii) x(n).u(n 2) (iii) Even samples of x(n).
- 5. A) Prove that LTI system is stable if its impulse response is absolutely summable. 8
 - B) Sketch the continuous-time signal $x(t) = 2 \sin \pi t$ for an interval $0 \le t \le 2$ sample the continuous time signal with sampling period T = 0.2 sec. and sketch the discrete time signal.
- 6. A) For the following signals, determine and sketch convolution y(n).

$$x(n) = \frac{1}{3}n \qquad 0 \le n \le 6$$

$$= 0 \qquad \text{otherwise}$$
and $h(n) = 1 \qquad -2 \le n \le 2$

$$= 0 \qquad \text{otherwise}$$

B) Check whether the following system are linear or not.

i)
$$y(n) = 2x(n) + \frac{1}{x(n-1)}$$

ii)
$$y(n) = cosx(n)$$
.

- 7. A) Define a signla. Give in detail classification of signals.
 - B) State and prove linear convolution sum. 6

Seat	
No.	

	•	- II) (Semester - ELECTRONIC: – IX:Digital S	S (CG	SPA)		
•	Date : Monday, 16-1 30 p.m. to 5.00 p.m.				Total Marks :	70
Ins	3) Atte	empt five question estions 1 and 2 are empt any three fro ures to right indic	e com p om Q	3 to Q. 7 .		
1. A) Ch	noose the correct a	nswer:				8
1)	The region of conv	ergence of the z-ti	ransfor	m of the sigi	nal x(n) = {2, 1, 1, 2}	
	is					
	a) all z, except z	= 0 and z = ∞	b) all z, except $z = 0$		z = 0	
	c) all z, except z	∞ d) all z				
2)	For a stable syste	m				
	a) z < 1	b) z > 1	c) z	: = 1	d) $ z \neq 1$	
3)	What is the Nyquis $x(t) = 3\cos 50 \pi t +$	•	_			
	a) 50 Hz	b) 100 Hz	c) 20	00 Hz	d) 300 Hz	
4)	The function $\frac{\sin(\pi u)}{\pi u}$	$\frac{\mathrm{cu}}{\mathrm{u}}$ is denoted by _				
	a) $sinc(\pi u)$		b) si	nc(u)		
	c) signum			d) none of these		
5)	If the Fourier serie		a sign	al are perio	odic then the signal	
	a) continuous-tim	e, periodic	b) di	iscrete-time	e, periodic	
	c) continuous-tim	e, non periodic	d) di	iscrete-time	, non periodic	

		6) In time scaling property x(at) is expandation a, when	anded version of the signal x(t) by a	
		a) a < 1	b) a > 1	
		c) a = 1	d) a ≠ 1	
		7) z-transform of delayed unit impulse,	$\delta(n-k) =$	
		a) z ^{-k}	b) z ^k	
		c) 1	d) none	
		8) The amplitude of unit impulse function	n is 1 at	
		a) n≤0	b) $n \ge 0$	
		c) n = 1	d) $n = 0$	
	B)	State true or false :		6
		 Zeros are the roots of the numerator becomes zero. 	, or the value of ℤ for which X(z)	
		2) The result of circular and linear conv	olution is not same.	
		3) Ideal filters are practically realizable	•	
		4) FIR has infinite memory requirement		
		5) The inverse Fourier transform of $\delta(v)$	(1) is $\frac{1}{2\pi}$.	
		6) The Kaiser window method is mostly	used for designing FIR system.	
2.	A)	Attempt any two:		10
		1) What are twiddle factors of DFT?		
		2) Differentiate between z-transform an	d DFT.	
		3) Explain standard test signal.		
	B)	Write a note on Bilinear transformation.		4
3.	A)	State and prove frequency and time shift	ting properties of FT.	8
	B)	Find the FT of the following signals:		6
		i) $x(t) = e^{j\omega_0 t} u(t)$		
		ii) $x(t) = cos(\omega_0 t) \cdot u(t)$.		

-3-

SLR-MM - 276

8

4. A) Develop direct form-II realization of the transfer function.

$$H(z) = \frac{3 + 3.6z^{-1} + 0.6z^{-2}}{1 + 0.1z^{-1} - 0.2z^{-2}}.$$

- B) Explain direct form realization of FIR system. 6
- 5. A) Write a note on a properties of z-transform.
 - B) Determine the z-transform of following equations:

i)
$$x_1(n) = \{1, 2, 3, 4, 5, 0, 7\}$$

ii)
$$x_2(n) = \{1, 2, 3, 4, 5, 0, 7\}.$$

- 6. A) Compute the response y(k) by 4-point DFT for the following data : $x(n) = \{2, 1\}$ and $h(n) = \{1, 2\}$.
 - B) Explain the development and conditions required for existence of Fourier transform.
- 7. A) Given the two sequence of length 4 are

$$x(n) = \{0, 1, 2, 3\}$$

$$h(n) = \{2, 1, 1, 2\}$$

Find the circular convolution.

B) Find the inverse z of $X(z) = \frac{z}{z-1} |z| > 1$.

Seat	
No.	

M.Sc. – II (Semester – III) Examination, 2015 ELECTRONICS (CGPA) Paper – X : Advanced Digital Systems Design With VHDL

Day and D	ate : Wednesday,	19-11-2015			Total Marks :	70
•	0 p.m. to 5.00 p.m				i Otal Marks .	70
Instru	uctions: 1) Q. 1 &	-	-			
	2) Atten	npt any three fron	n Q. 3	3 to 7 .		
	3) Figur	es to the right ind	licate	es full marks.		
1. A) Ch	noose correct alter	native :				8
1)	The most commo	only used logic blo	ckeri	s a LUT prese	ent in	
·	a) FPGA	•		•		
2)	The operand for the	he '&' operator is _				
	a) Multi-dimension	onal array	b) I	Element type		
	c) One-dimensio	nal array	d) I	Both b) and c)		
3)	The back-end des	sign include		_ level abstrac	ction of design flow.	
		b) Logic			d) Technology	
4)	Every entity has i					
	a) Different	b) Mixed	c) (Own	d) None of these	
5)	Thecircuit.	is a mathematic	al wa	ay of emulatin	g the behaviour of	
	a) Simulation	b) Programming	gc) I	Entity	d) Architecture	
6)	In package STD_	LOGIC_1164, the	mea	ning of 'X' is $_$	-	
	a) Forcing known	ı	b) I	Forcing unkno	wn	
	c) Forcing hex		d) I	None of the ab	oove	
7)	The FPGA consu	mep	ower	than CPLD.		
	a) More	b) Less	c) I	Equal	d) Same	
8)	The 16 # B # E 2	represents				
	a) 11 * 16 ²	b) 11 * 16 * 2	c) ·	16 * 11 * 2	d) 16 * 11 ²	

SLR-MM-277

	B)	State True or False :	6
		1) Test bench is at the highest level in the hierarchy of the design.	
		2) The < = assignment operator is used to assign a value of constant.	
		3) The synthesis is used for verification of design.	
		4) The expression with syntax of NAND operator is illegal.	
		5) CPLD architecture is more granular is compared to FPGA.	
		6) In front end design the logic source is created from physical source.	
2.	A)	Attempt any two:	10
		1) Explain the concept of macro cell.	
		2) Discuss architecture using half-adder.	
		3) State the features of VHDL.	
	B)	Draw the structure of CPLD.	4
3.	A)	State the basic language element and explain operator in detail.	9
	B)	Write VHDL code for ALU.	5
4.	A)	State the various sequential statements. Explain in detail care state with suitable example.	9
	B)	Write VHDL code for 4 to 1 multiplexer.	5
5.	A)	State the various architecture bodies and explain in detail mixed style of body with suitable example.	9
	B)	Write VHDL code for shift register.	5
6.	A)	Explain in detail EDA tools.	9
	B)	Write VHDL code for counter.	5
7.	A)	Discuss in detail packages and libraries.	9
	B)	Write VHDL code for decoder.	5

.....

Seat	
No.	

M.Sc. (Part - II) (Semester - III) Examination, 2015 **ELECTRONICS (CGPA)**

Paper -	– XI : ARM M	icrocontroller	and System	Design (Elective – I)
Day and Da	te : Friday, 20-1	1-2015		Max. Marks: 70
Time: 2.30	p.m. to 5.00 p.m	n.		
Instruc	2) Q. No 3) Atter	npt five questions o. 1 and 2 are cor npt any three fro res to right indica	npulsory . m Q. No. 3 to 0	Q. <i>No.</i> 7 .
1. A) Cho	ose the correct	answer:		8
1) R	Reset will change	e the current proc	essor mode to	mode.
а) FIQ	b) IRQ	c) Abort	d) Supervisor
2) A	RM processor o	an operate in	differe	ent modes.
а) 7	b) 3	c) 5	d) 2
a c) Link) Banked	er is accessible in	all processor in all processor in b) Current produced d) Unbanked	
•		L setting time is b) 100 μs	c) 20 u s	d) 50 μs
5) Ir	n LPC 2148, I ² C	bus supports bit b) 200 K bit/s	rates upto	,
6) _	registe	er is the link regis	ter.	
а	ı) r ₁₃	b) r ₁₄	c) r ₇	d) r_0
a	When subroutine Stack pointer Program cour		sor stores retu b) Link registe d) None of the	er
8) Ir	n LPC 2148, AD	C has total	channels.	
а	a) 6	b) 8	c) 14	d) 12

R-MM – 278 A	
B) State true or false : 1) ARM stands for Advanced Reduced Machine. 2) The cache is placed between main memory and core. 3) In LPC 2148, on-chip oscillator operates with crystal in range of I-25 MHz. 4) Jazzel state having 16 bit instruction set. 5) All instructions in ARM are conditionally executed. 6) The I ² C bus is multi-master bus.	
 A) Attempt any two: 1) Write a note on Barrel shifter. 2) Compare between ARM, Thumb and Jazzle ISA. 3) Explain exception priorities in ARM. B) State and explain the nomenclature used for ARM processor. 	
A) What do you mean by ARM instruction set architecture? B) Explain Timer/counter in ARM. 6	
A) What are on-chip peripherals of LPC 2148? Describe on-chip ADC in detail. B) Describe the pipelining of ARM microcontroller.	
A) Describe register section of the ARM core. B) Write a note on modes of ARM processor. 6	
. A) Draw the block diagram of ARM core and explain ALU section in detail.	3

7. A) Describe the designing of ARM micro-controller based on embedded system to measure humidity.

6

8

6

B) Explain CPSR in detail.

B) Mention the salient features of LPC 2148.

Seat	
No.	

	Electi	ve – I : ELEC	III) Examination TRONICS (CGP esign Technolo	A)
-	Oate : Friday, 20-11 0 p.m. to 5.00 p.m			Max. Marks: 70
Ins	3) Fig 4) Dra	lve any three fro ures to the right		
1. A) Ch	noose correct alter	native :		8
1)	For n-MOS enhar mode is	cement transisto	r the V_{gs} and V_{t} rela	tion for accumulation
	a) $V_{gs} > V_t$	b) $V_{gs} = V_t$	c) $V_{gs} \ll V_t$	d) None of these
2)	<u> </u>	•	-	an in
	a) Decreases	b) Increases	c) Constant	d) None of these
3)	CMOS inverter a	cts as an amplifie	er in	region.
	a) A	b) B	c) C	d) D
4)	Width of P-device	e is	_time greater than	N-device.
	a) 2	b) 4	c) 6	d) 8
5)	Static power diss	ipation is occur d	lue to	_
	a) Leakage curre	ent		
	b) Switching tran	sient current		
	c) Charging and	discharging of lo	ad capacitance	
	d) None of these			
6)	For pseudo-nMO	S inverter gate o	of the P-device is co	onnected to
	a) Vdd	b) Ground	c) Output	d) Floating

SLR-MM-278B

		7)	In Silicon on Insul	ator (SOI)			_ is used as s	ubstrate.	
			a) Sapphire		b)	Ma	agnesium alur	ninate spinel	
			c) Silicon		d)	Во	oth a) and b)		
		8)	Minimum size of o	contact is					
			a) 2λ	b) 3λ	c)	4λ	(d) 5λ	
	B)	Sta	ate True or False :						6
		1)	The Components	of a dataflow pro	gra	m a	are called acto	ors.	
		2)	The link does not the connection di		iste	r-tr	ansfer enviro	nment because of	
		3)	The result of latch	nup effect is the s	hor	ting	g of the V _{DD} a	nd V _{SS} .	
		4)	Logic synthesis p	rocess produce n	etli	st.			
		5)	The switching speand discharge the	_			ited by the tim	ne taken to charge	
		6)	Photoresist mate	rial is used as ma	sk	in F	abrication Pr	ocess.	
2.	A)	So	lve any two :						10
		1)	Explain Noise Ma	rgin					
		2)	Explain latchup						
		3)	Draw a stick diag	ram for two input	NA	ND	gate.		
	B)	Wr	ite a note on place	ment and routing.					4
3.	A)	Ex	plain DC characte	ristics of CMOS ir	ıve	rter	r.		8
	B)	Ex	olain Pseudo-nMO	S inverter.					6
4.	A)	Ex	plain Silicon On In	sulator (SOI) prod	es	s.			8
	B)	Wr	ite a note on γ -dia	gram.					6
5.	A)	Ex	olain power dissipa	ation.					8
	B)	De	rive pull up to pull	down ratio.					6
6.	A)	Ex	plain switching cha	aracteristics of CN	/10	S.			8
	B)	Dra	aw as layout for 2 i	nput OR gate.					6
7.	A)	Ex	plain two phase clo	ocking strategies.					8
	B)	De	rive threshold volta	age equation.					6

SLR-MM - 279A

Seat	
No.	

M.Sc. (Part - II) (Semester - III) Examination, 2015

	ELECTRO	NICS (CGPA)		
Paper – XI	I (Elective – II)) : Medical Insti	rumentation	
Day and Date: Monday, 2	3-11-2015		Total Marks	: 70
Time: 2.30 p.m. to 5.00 p	.m.			
Instructions: 1) Answer five qu	uestions.		
2	?) Question 1 and	d 2 are compulso i	y.	
3	B) Attempt any ti	hree from Q. 3 to 0	Q. 7 .	
4	l) Figures to the	right indicate full	marks.	
1. A) Choose correct an	swer.			8
1) Bioelectric pot	entials are gene	rated at a	_ level.	
a) Chemical	b) Cellular	c) Electrical	d) Skin	
2) The cell member	orane in excited s	state permits the e	ntry of ions.	
a) K+	b) Cl+	c) Na+	d) P+	
3) The	_ is the record of	skeletal muscles a	action potential.	
a) ECG	b) EMG	c) EEG	d) PCG	
4) The	_wave represent	s repolarization of	ventricles.	
a) P	b) S	c) T	d) Q	
5) The contact in	npedance of float	ting electrode is	K Ohms.	
a) 60	b) 50	c) 80	d) 70	
6) A n with in the sar		contains both acti	ve reference electrode	;
a) Hypodermi	С	b) Earth ring		
c) Concentric	core	d) Micro		

SLR-MM - 279A

	7,	than	rrent for blomedica	al instrumentation	snould not be greater	
		a) 10 micro A		b) 20 micro A		
		c) 30 micro A		d) 50 micro A		
	8)	The	picture is called a	radiograph.		
		a) Alpha ray	b) X-ray	c) Gamma ray	d) Beta ray	
	B) Sta	ate true or false .				6
	1)	In arteries blood	d flow is linear.			
	2)	In 10 – 20 EEG	system there are	21 electrode locat	ions.	
	3)	The isolation as currents.	mplifier always pr	ovides the protec	tion against leakage	
	4)	Limb electrodes	s are generally ma	de up of steel-silve	er.	
	5)	The positive popotential.	tential of the cell	membrane during	excitation is resting	
	6)	The body fluid is	s slightly acidic.			
2.	A) Att	empt two .				10
	1)	Explain the role	of jellies and crea	m in electrical con	ductivity of electrode.	
	2)	Draw neat labe	led cell potential d	iagram.		
	3)	Write the featur	res of diagnostic >	۲-ray.		
	B) Ex	plain Ag-Ag elect	rode.	•		4
3.	A) Ex	plain in detail car	diovascular syste	m with engineering	g diagram.	9
	B) Wr	ite a note on EM	G electrode.			5
4.	A) Ex	plain the general	architecture of the	e biomedical recor	ding system.	9
	B) Wr	ite a note on bloc	od gas electrode.			5
5.	A) Ex	plain in detail mo	dern EEG recordi	ng system.		9
	B) Ex	plain the heart sc	ound.			5
6.	A) Ex	plain the concept	t of resting and act	tion potential.		9
	B) Wr	ite a note on isol	ation amplifier.			5
7.	A) Ex	plain in detail mo	dern imaging syst	em.		9
	B) Wr	ite a note on Ner	nst equation.			5

Seat	
No.	

M Sc. - II (Sem. - III) Examination 2015

	ELECT	RONICS (CGPA) e – II : Digital Communication	
-	ate : Monday, 23-11-2015) p.m. to 5.00 p.m.	Max. Mark	ks : 70
Ins	3) Figures to the 4) Draw necessa	are compulsory. ree from Q. 3 to Q. 7. e right indicate marks. eary diagram wherever necessary. tific calculator is allowed.	
1. A) Ch	oose the correct alternate of	the following.	8
	In line coding AMI is sub cod a) biphase b) unipolar	ding of method. r c) polar d) bipolar	
ŕ	_	bck diagram is first block. b) modulator d) source decoder	
•	The form of modulation used a) QAM b) PSK	d in ADSL is c) FSK d) None of these	
	over the channel.	ding an transmission of the signature b) noisi d) all of these	al
	is digital modulat a) PM b) AM	tion technique. c) FM d) PCM	
6)	Coding techniques can be use a) Detect c) Both a) and b)	,	
•	_	epresent Hz Frequency. c) 1010 d) 500	
,	Shannon's sampling theoren a) Fs ≤ 2Fm c) Both a) and b)	m state that b) Fs ≥ 2Fm d) None of these	P.T.O.

SLR-MM-279-B

	B)	State true of false.	6
		1) Asynchronous transmission is faster than synchronous transmission.	
		2) FDM is used for multiplexing.	
		3) ISDN stand for Integrated Service Domain Network.	
		4) Low signaling rate is advantage of delta modulation.	
		5) The center of Gravity of earth is called Geostation.	
		6) Adaptive delta modulation reduce the slop overload distortion and granular noise.	
2.	A)	Answer any two of the following.	10
		1) Write a note on ISDN.	
		2) Draw waveform of NRZ, RZ and AMI for 0110101.	
		3) What is the difference between analog repeater and digital repeater?	
	B)	Write a note on QAM.	4
3.	A)	Explain elements of digital communication technique.	8
	B)	Explain telephone system.	6
4.	A)	Explain adaptive delta modulation.	8
	B)	Explain PWM technique.	6
5.	A)	What is meant by Hamming Code? Explain its structure and correct the error for 1010010.	8
	B)	Explain in detail PSK modem.	6
6.	A)	Explain error detection technique.	8
	B)	Explain power and energy of sampling signal.	6
7.	A)	Explain in detail Pulse code modulation.	8
	B)	Explain Shannon's channel capacity theorem.	6

Seat	
No.	

M.Sc. (Part – II) (Semester – III) Examination, 2015 ELECTRONICS (CGPA)

Paper - XII: (Elective - II): CMOS Analog Circuit Design

•	•		•		
Day and Date: Monday, 2 Time: 2.30 p.m. to 5.00 p			Total Marks	: 70	
2) . 3) .	Question 1 and 2 ar Attempt any three Figures to the right Use of calculators/l	from Q. 3 to Q. 7 . tindicate full mark			
1. A) Choose correct al	ternatives :			8	
-	voltage reaches to t es	-	then substrate under		
a) saturated	b) inverted	c) quenched	d) isolated		
2) The unit of shee	et resistance is				
a) ohm	b) ohm/cm	c) ohm/square	d) none of these		
3) In case of MOS	transistor, the subs	strate must be			
a) Storage grou	unded	b) Positive			
c) Negative		d) Floating			
4) If MOS transisto	or is used as switch	then, the switch re	sistance		
a) decreases v	vith gate voltage	b) increases wit	h gate voltage		
c) always cons	stance	d) all of these			
5) When the gate and drain nMOS transistor are tied together, then it ac					
a) Capacitor	b) MOS diode	c) Inverter	d) Active pull up		
6) Which of the fol transistor ?	llowing condition sh	ould satisfy, for sa	turation of nMOS		
a) $V_{gs} = V_T$		b) $V_{gs} > V_{T}$			
c) $V_{DS} > V_{gs} -$	V_{T}	d) $V_{DS} < V_{gs} - V_{gs}$	V_{T}		
7) According to pr given by	rinciple of switching	capacitor the equ	ivalent resistance is		
a) $R = \frac{V}{I}$	b) $R = \frac{1}{C Fs}$	c) $R = \frac{Fs}{C}$	d) R = C⋅Fs		
				T ^	

SLR-MM - 279-C

		8) For active load differential amplifier _a) nMOS transistorc) BiCMOS transistor	b) PMOS tran			
	B)	 State True or False: 1) The parasitic capacitance exhibit fringing effect. 2) The SiO₂ layer of the gate can be used form active capacitor. 				
		 3) For switched capacitor circuit the clo 4) The PMOS transistors are used for c 5) On saturation the drain current rema 6) The nMOS is fabricated in P well a substrate. 	current sink. ins unaffected	by channel length.		
2.	A)	A) Attempt any two of following: 1) What do you mean by MOS switch? 2) Write a note on current sink. 3) Describe Large-signal model of nMOS transistor.				
	B)	Write a short note on BiCMOS transisto	or.		4	
•		Describe current mechanism in nMOS transistor.				
		Describe in detail use of MOS transistor as a active resistor.				
4. A)	A)	With block diagram describe the design of two stage operational amplifier.				
	B)	What do you mean by reference in anal	log circuit?		6	
		Derive the expression for equivalent resistance of switched capacitor circuit. Discuss series and parallel combination of capacitors.				
	B)	Write a note of switched capacitor sum	ming amplifier		6	
6.		Describe in detail CMOS class A, source circuits. What do you mean by differential ampli		push-push amplifier	8	
7.	-	Describe a design of switched capacito What do you mean by parasitic capacita		and integrator circuit.	8 6	